Parallel Analysis: a Method for Determining Significant Principal Components
نویسندگان
چکیده
Numerous ecological studies use Principal Components Analysis (PCA) for exploratory analysis and data reduction. Determination of the number of components to retain is the most crucial problem confronting the researcher when using PCA. An incorrect choice may lead to the underextraction of components, but commonly results in overextraction. Of several methods proposed to determine the significance of principal components, Parallel Analysis (PA) has proven consistently accurate in determining the threshold for significant components, variable loadings, and analytical statistics when decomposing a correlation matrix. In this procedure, eigenvalues from a data set prior to rotation are compared with those from a matrix of random values of the same dimensionality (p variables and n samples). PCA eigenvalues from the data greater than PA eigenvalues from the corresponding random data can be retained. All components with eigenvalues below this threshold value should be considered spurious. We illustrate Parallel Analysis on an environmental data set. We reviewed all articles utilizing PCA or Factor Analysis (FA) from 1987 to 1993 from Ecology, Ecological Monographs, Journal of Vegetation Science and Journal of Ecology. Analyses were first separated into those PCA which decomposed a correlation matrix and those PCA which decomposed a covariance matrix. Parallel Analysis (PA) was applied for each PCA/FA found in the literature. Of 39 analyses (in 22 articles), 29 (74.4 %) considered no threshold rule, presumably retaining interpretable components. According to the PA results, 26 (66.7 %) overextracted components. This overextraction may have resulted in potentially misleading interpretation of spurious components. It is suggested that the routine use of PA in multivariate ordination will increase confidence in the results and reduce the subjective interpretation of supposedly objective methods.
منابع مشابه
Morphological identification of Zanjan shit's region capers (Capparis spinosa) and its fruits qualitative and quantitative and photochemical Assessment
Determining the morphological characteristics of each plant is an important criterion in generating information for breeding programs. Understanding the vegetation of the region provides planners with a sound vision of the future. Zanjanchr('39')s Tarom Sheet area is a desert state and only allows certain species to grow. In this area, the plants are highly resistant to drought and with unpredi...
متن کاملPersian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملDeveloping a method for reliability allocation of series-parallel systems by considering common cause failure
Reliability allocation has an essential connection to design for reliability and is an important activity in the product design and development process. In determining the reliability of subsystems or components on the basis of goal reliability, attention must be paid to failure effect, failure information, and improvement opportunities based upon real potentials for reliability improvement. In...
متن کاملA fuzzy reliability model for series-parallel systems
Fuzzy set based methods have been proved to be effective in handling many types of uncertainties in different fields, including reliability engineering. This paper presents a new approach on fuzzy reliability, based on the use of beta type distribution as membership function. Considering experts' ideas and by asking operators linguistic variables, a rule base is designed to determine the level ...
متن کاملSPSS and SAS programs for determining the number of components using parallel analysis and velicer's MAP test.
Popular statistical software packages do not have the proper procedures for determining the number of components in factor and principal components analyses. Parallel analysis and Velicer's minimum average partial (MAP) test are validated procedures, recommended widely by statisticians. However, many researchers continue to use alternative, simpler, but flawed procedures, such as the eigenvalue...
متن کامل